Weak formulations are an important tool for the analysis of mathematical equations that permit the transfer of concepts of linear algebra to solve problems in other fields such as partial differential equations. In a weak formulation, an equation is no longer required to hold absolutely (and this is not even well defined) and has instead weak solutions only with respect to certain "test vectors" or "test functions". This is equivalent to formulating the problem to require a solution in the sense of a distribution.
We introduce weak formulations by a few examples and present the main theorem for the solution, the Lax–Milgram theorem.
Contents |
Let be a Banach space. We want to find the solution of the equation
where and , and is the dual of .
Calculus of variations tells us that this is equivalent to finding such that for all holds:
Here, we call a test vector or test function.
We bring this into the generic form of a weak formulation, namely, find such that
by defining the bilinear form
Since this is very abstract, let us follow this by some examples.
Now, let and a linear mapping. Then, the weak formulation of the equation
involves finding such that for all the following equation holds:
where denotes an inner product.
Since is a linear mapping, it is sufficient to test with basis vectors, we get
Actually, expanding , we obtain the matrix form of the equation
where and .
The bilinear form associated to this weak formulation is
Our aim is to solve Poisson's equation
on a domain with on its boundary, and we want to specify the solution space later. We will use the -scalar product
to derive our weak formulation. Then, testing with differentiable functions , we get
We can make the left side of this equation more symmetric by integration by parts using Green's identity:
This is what is usually called the weak formulation of Poisson's equation; what's missing is the space . Well, this is a bit tricky and way beyond the scope of this article. The space must allow us to write down this equation. Therefore, we should require that the derivatives of functions in this space are square integrable. Now, there is actually the Sobolev space of functions with weak derivatives in and with zero boundary conditions, which fulfills this purpose.
We obtain the generic form by assigning
and
This is a formulation of the Lax–Milgram theorem which relies on properties of the symmetric part of the bilinear form. It is not the most general form.
Let be a Hilbert space and a bilinear form on , which is
Then, for any , there is a unique solution to the equation
and it holds
Here, application of the Lax–Milgram theorem is definitely overkill, but we still can use it and give this problem the same structure as the others have.
Additionally, we get the estimate
where is the minimal real part of an eigenvalue of .
Here, as we mentioned above, we choose with the norm
where the norm on the right is the -norm on (this provides a true norm on by the Poincaré inequality). But, we see that and by the Cauchy–Schwarz inequality, .
Therefore, for any , there is a unique solution of Poisson's equation and we have the estimate